Lagrange and the Solution of Numerical Equations
نویسندگان
چکیده
In 1798 J.-L. Lagrange published an extensive book on the solution of numerical equations. Lagrange had developed a general systematic algorithm for detecting, isolating, and approximating all real and complex roots of a polynomial equation with real coeecients, with arbitrary precision. In contrast to Newton's Method, Lagrange's algorithm is guaranteed to converge. We discuss some lesser known aspects of Lagrange's work. In particular, some of his powerful ideas and techniques adumbrated methods developed much later in geometry and abstract algebra, such as MM obius transformations and quotient rings of polynomial rings. We also show that his techniques included accelerating both the convergence and calculation of his continued fraction expansions of the roots.
منابع مشابه
Numerical solution of functional integral equations by using B-splines
This paper describes an approximating solution, based on Lagrange interpolation and spline functions, to treat functional integral equations of Fredholm type and Volterra type. This method can be extended to functional differential and integro-differential equations. For showing efficiency of the method we give some numerical examples.
متن کاملNumerical solution of variational problems via Haar wavelet quasilinearization technique
In this paper, a numerical solution based on Haar wavelet quasilinearization (HWQ) is used for finding the solution of nonlinear Euler-Lagrange equations which arise from the problems in calculus of variations. Some examples of variational problems are given and outcomes compared with exact solutions to demonstrate the accuracy and efficiency of the method.
متن کاملAn effective method for approximating the solution of singular integral equations with Cauchy kernel type
In present paper, a numerical approach for solving Cauchy type singular integral equations is discussed. Lagrange interpolation with Gauss Legendre quadrature nodes and Taylor series expansion are utilized to reduce the computation of integral equations into some algebraic equations. Finally, five examples with exact solution are given to show efficiency and applicability of the method. Also, w...
متن کاملA Legendre-spectral scheme for solution of nonlinear system of Volterra-Fredholm integral equations
This paper gives an ecient numerical method for solving the nonlinear systemof Volterra-Fredholm integral equations. A Legendre-spectral method based onthe Legendre integration Gauss points and Lagrange interpolation is proposedto convert the nonlinear integral equations to a nonlinear system of equationswhere the solution leads to the values of unknown functions at collocationpoints.
متن کاملDetermination of the best-fitting reference orbit for a LEO satellite using the Lagrange coefficients
Linearization of the nonlinear equations and iterative solution is the most well-known scheme in many engineering problems. For geodetic applications of the LEO satellites, e.g. the Earth’s gravity field recovery, one needs to provide an initial guess of the satellite location or the so-called reference orbit. Numerical integration can be utilized for generating the reference orbit if a satelli...
متن کاملAn approach based on statistical spline model for Volterra-Fredholm integral equations
In this paper, an approach based on statistical spline model (SSM) and collocation method is proposed to solve Volterra-Fredholm integral equations. The set of collocation nodes is chosen so that the points yield minimal error in the nodal polynomials. Under some standard assumptions, we establish the convergence property of this approach. Numerical results on some problems are given...
متن کامل